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INTRODUCTION 

During the course of growing large (7.5 cm in diameter and 10 cm high) 
yttrium aluminum garnet (YAG) single crystals by vertical solidification (Heat 
Exchanger Method (HEM),1 two crucial factors were recognized as necessary to grow 
single crystals free of scattering centers: 

(a) the starting material has to contain only the Y3Al5012 phase;
2 

(b) the melting point of the garnet phase has to be known with the greatest 
possible accuracy in order to prevent melting of a seed crystal while simultaneously 
insuring complete melting of the charge. 

Published melting points of YAG are given as 1930 C3'^ and 1970 C.5"7 By 
contrast, the temperature of thermoarrest observed during the melting of 2000-g 
batches of sintered YAG materials indicated that the melting point of YAG is 
neither 1930 C nor 1970 G, but rather lies between those temperatures.  In view 
of the conflicting information on melting points of YAG it appeared that a new 
determination of melting point and a study of YAG melting behaviour would be of 

value. 

MEASUREMENTS OF THE YAG MELTING POINT 

At the beginning of this investigation the melting point of YAG was measured 
by four commonly used experimental techniques:  differential thermal analysis 
(DTA), hot wire microscopy, an iridium strip furnace, and direct observation of 
the sample melting through an optical pyrometer (DOSMTOP). 

Differential thermal analysis was found unsuitable due to instability of 
the emf of W-3%Re versus W-25%Re thermocouple wires at temperatures over 1800 C. 
The melting points as determined by the hot wire microscope, strip furnace, 
and DOSMTOP are listed in Table 1.  The average temperature 1968 G obtained by 
the hot wire microscope is in good agreement with the 1970 C melting point 
reported by Warshaw and Roy,5 Olds and Otto,6 and Abell et al.7 On the other 
hand, the average melting points obtained by the other methods were too high, 
and a particularly large standard deviation of the DOSMTOP method measurements 
indicated a possible error in the concept of this method. 

Despite the scatter in the YAG melting point measurements, the 2058 C 
melting point of AI2O3 as determined by the DOSMTOP agreed well with the 2055 ± 

1. VIECHNICKI, D. J., and SCHMID, F.   Crystal Growth Using the Heat Exchanger Method (HEM).   L Crystal Growth, v. 26, 1974, 
p. 162-164. 

2. VIECHNICKI, D. J., and CASLAVSKY, J. L.  Solid State Formation O/AW.-FJ^/JO^ (Nd:YAGj.   Army Materials and Mechanics 
Research Center, AMMRC TR 78-7, February 1978. 

3. TOROPOV, N. A., BONDAR, I. A., GALADHOV, F. Ya., NIKOGOSYAN, Kh. S., and VINOGRADOVA, N. V.   Izv. Akad. Nauk. 
SSSR, Ser. Khim., v. 7, 1969, p. 1158. 

4. MIZUMO, M., and NOGUCHI, T.   Rep. Gov. Ind. Res. Inst. of Nagoya, v. 16, 1967, p. 171. 
5. WARSHAW, I., and ROY, R.  Stable and Metastable Equilibria in the Systems Y'pyM^^ and Gc^Oj-^0.?-   J- Amer- Cer- Soc-' 

v. 42, 1959, p. 434-438. 
6. OLDS, L. E., and OTTO, H. E.  Phase Diagrams of Ceramists.   J. Amer. Cer. Soc, E. M. Levin, et al., ed., 1969, Figure 311. 
7. ABELL, J. S., HARRIS, J. R., COCKAYNE, B., and LENT, B. An Investigation of Phase Stability in the Y^yAljO^ System. 

J. Mater. Sci., v. 9, 1974, p. 527-537. 



Table 1.   YAG MELTING POINTS MEASUREMENT 

Hot Wire       Strip      DOSMTOP' 
Microscope    Furnace      Method 

Sample      Peg C Peg C        Peg C 

1 1969 1987 1990 
2 1969 1992 1970 
3 1971 1991 1965 
4 1970 1988 1974 
5 1970 1975 1974 
6 1971 1986 1992 
7 1965 1986 1960 
8 1969 1991 1962 
9 1968 1990 1988 

10 1968 1992 1960 
11 1967 1989 1992 
12 1970 1988 1996 
13 1971 1990 1965 
14 1968 1990 1982 
15 1968 1988 1982 
16 1969 1990 1988 

Average 1968.94 1988.31 1978.75 
Standard Deviation 1.61 4.03          13.32 

"Direct observation of sample melting through the optical pyrometer. 

6 C melting point reported by Jones8 and Schneider and McDaniel.9 Since even 
better agreement was found between the tabulated melting point of platinum 
and those measured by DOSMTOP,' it was inferred that the inconsistency in the 
measurements of the YAG melting point was due to some intrinsic property of YAG 
rather than to the method itself. 

Since the literature survey and results obtained show that the YAG melting 
point lies in the temperature range between 1950 C and 1975 C, another indirect 
experimental method was used to better define the melting point of YAG.  The 
method is based on Warshaw and Roy's5 observation of the ease with which YAIO3 
forms from a melt of Y3AI5O12 composition.  The experimental arrangement was 
identical to that used in the DOSMTOP determination of YAG melting points with 
the difference that the YAG crystal was brought only to a desired temperature 
and cooled down. The sample was then examined by a petrographic microscope and 
powder X-ray diffraction analysis.  Results of both examinations are presented 
in Table 2. 

YA103 was found in the sample of YAG crystal heated to 1930 C which implied 
that YAG started to melt at this temperature.  Since the sample was held at this 
temperature for a short period of time, it was assumed that an insufficient amount 
of heat was supplied to the sample to achieve complete melting.  To test this 
assumption, large samples of YAG crystals were heated as in the previous experiment 
except that the temperature was stabilized at a certain value measured with the 
optical pyrometer, which then was replaced with a camera, and the sample was 

8. JONES, T. P.   The Melting Point o//!^0.? '" Vacuum.   J. Aust. Cer. Soc, v. 5, 1969, p. 41-44. 
9. SCHNEIDER, S. J., and McDANIEL, C. L.  Effect of Environment Upon the Melting Point of AUO?.   J. Research of NBS v 71A 

1967, p. 317-333. 



Table 2.   MICROSCOPIC AND X-RAY EXAMINATION OF YAG SAMPLES 
ANNEALED AT DIFFERENT TEMPERATURES 

Blackbody 
Enclosure 

Temperature, 
Deg C 

Microscopic 
Observation 

Phase 
Present 

1900 N/C* YAG 

1905 N/C YAG 

1910 N/C YAG 

1915 N/C YAG 

1920 N/C YAG 

1925 N/C YAG 

1930 N/C YAG + Trace of YAI03 

1935 N/C aAl 03 + YAI03 + Traces of YAG 

1940 N/C aAI203 + YAI03 

1945 Rounding of edges aAI203 + YAI03 

1950 Edges more rounded aAI203 + YAI03 

1955 Sample Collapsed aAI203 + YAI03 

sNo change 

photographed.  This procedure was repeated for all the temperatures indicated in 
Figure 1 until collapse of the sample occurred.  This experiment confirmed previous 
findings that YAG melts or begins to melt at 1930 C and simultaneously indicated 
that the length of time at temperature was not the only factor determining 
collapse of the sample.  All experiments thus far showed that the collapse of the 
YAG single crystal was not a sensitive indicator of the melting.  Hence, a method 
sensitive to the change of the latent heat of melting had to be used, but for 
reasons previously discussed it could not employ thermocouples. 

During the course of this investigation it was noticed that before the YAG 
crystals collapsed they first brightened and then darkened considerably. These 
brightening and darkening phenomena were measured and recorded in Table 3 for 
several YAG samples.  The 1928 C brightening temperature was close to the 1930 C 
melting point of YAG reported by Toropov et al.3 and Mizumo and Noguchi,4 while 
the 1935 C darkening temperature was near the 1937 C thermoarrest temperature 
observed during the melting of large boules of sintered YAG material in the 
crystal growth furnace; it was inferred that this optical effect was associated 
with the melting of YAG and also was a sensitive indicator of this melting. 

OPTICAL DIFFERENTIAL THERMAL ANALYSIS (0DTA) 

Since the brightening and darkening effects of YAG are easily perceivable 
with the eye, it became evident that a differential curve could be registered 
by an optical apparatus utilizing the following radiation principles.  When 
radiant energy strikes a material surface, part of the radiation is absorbed 



Figure 1.   Photographs of the progress in melting of YAG single crystal as run with 
increasing temperature. 



and part is reflected.  A body which does not reflect any radiation is called 
a blackbody.  On the other hand, at any given temperature a real object will 
radiate only a fraction as much energy as the blackbody and that fraction is 
called emissivity.  Emissivity of an object varies widely with its temperature 
and its surface condition.  In conformity with radiation principles the optical 
differential curve is obtained by differentiation of current signals from two 
infrared detectors. A block schematic is presented in Figure 2. Detector® 
monitors the temperature of the blackbody containing the sample while the 
detector (5) measures the brightness temperature of the sample.  The heat capacity 
of the blackbody enclosure ® is considerably higher than the heat capacity of 
the sample ®. Accordingly, the blackbody temperature is not affected by temper- 
ature changes taking place in the sample.  Therefore, the real temperature of 
the sample is the temperature of the blackbody enclosure.  First measurements 
obtained by this apparatus revealed a high degree of uncertainty and indeed a 
real problem of how to relate maxima and minima of the ODTA curve to the temper- 
ature scale. At this point, it was realized that the infrared detector generates 
a current proportional to the intensity of radiation, but that its intensity, as 
well as the signal current, is a highly nonlinear function of the temperature. 
The differentiation of these mutually nonlinear signals resulted in a curve with 
both endothermic and exothermic peaks, irregularly shaped, and often obscurred 
by a drift of the zero line.  Linearization (2) of the current signals with respect 
to the temperature prior to differentiation ® made the differential curve legible 
while simultaneously eliminating the zero drift.  The ODTA record of melting an 
AI2O3 single crystal is shown in Figure 3.  Using this apparatus melting points 
of 2051 C were observed for the Verneuil-grown AI2O3 single crystal, 2053 C for 
the HEM-grown AI2O3 crystal, and 2056 C for the National Bureau of Standards 

Table 3. MEASUREMENT OF BRIGHTENING 
AND DARKENING TEMPERATURE OF 

YAG SINGLE CRYSTAL 

Temperature, Deg C 

Sample Brightening Darkening 

1 1929 1934 
2 1926 1930 
3 1931 1936 
4 1927 1931 
5 1928 1934 
6 1930 1936 
7 1925 1932 
8 1927 1932 
9 1928 1936 

10 1931 1937 
11 1926 1934 
12 1929 1938 
13 1925 1937 
14 1924 1936 
15 1930 1935 

Average Temperature     1927.73 1934.53 

Standard Deviation 2.25 2.39 

(2 

(€   ■   1) 

_5 

Ta    Tr     c2 X 

(3) Insulation 

(4) Graphite Heater 

(5) Blackbody Enclosure 

(6) Sample 

(7) Signal Linearization 

(8) Signal Differentiation 

Figure 2.   Schematic of optical differential thermal analysis apparatus. 
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Figure 3.   ODTA curve of melting and freezing of a AI2O3.   (NBS standard 
reference material No. 742). 

Al203 powder.  These data show good agreement with the data reported by Jones' 
and Schneider and McDaniel,9 and confirmed the suitability of the ODTA tech- 
nique for determination of melting points at high temperatures. 

SENSITIVITY OF THE ODTA APPARATUS 

In the final version of the ODTA apparatus, automatic optical pyrometers 
of the M0DL1NE 2000 series* are used.  The current signal is linearized with 
respect to the temperature with a +10% accuracy in the range between 1200 C and 
2200 C.  In this range the linearized output is 0 to +100 mV dc.  The magnitude 

♦Manufactured by IRCON Inc., Skokie, Illinois 



of the differential signal was evalua 
minimum formed when a YAG crystal was 
mum was 32 C deep and 30 C wide. For 
YAG crystal was melted under the same 
differential curve was recorded by th 
was only 6 C deep and 64 C wide, and 
melting temperature. The better reso 
thermocouple measurements is attribut 
which eliminates the reaction heat lo 
of thermocouples. The reproducibity 
ODTA is ±7 C in the range between 120 

ted experimentally from an endothermic 
heated at the rate of 7 C/min.  The mini- 
comparison of the ODTA and DTA data, the 
experimental conditions, but this time a 

ermocouples.  The DTA endothermic minimum 
indicated an approximately 30 C higher 
lution of optical measurements compared to 
ed to contactless sensing of temperature, 
ss due to the heat capacity and conductivity 
of melting points as determined by the 
0 C and 2200 C. 

MELTING POINT OF YAG 

The ODTA curve shown in Figure 4 depicts melting and freezing of a YAG 
single crystal.  The first exothermic maximum at 1926 C falls in the range of the 
brightening of YAG which precedes its melting, as imaged by the endothermic mini- 
mum at 1939 C.  With decreasing temperature, a sharp exothermic maximum at 1632 C 
indicates a spontaneous solidification which occurred at a high degree of super- 
cooling.  This 307 C supercooling suggests that under certain conditions the YAG 
melt may be able to adopt an alternative path of solidification, even though 
Abell et al.7 considered YAG to be the only unambiguously stable phase in the 
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AI2O3-Y2O3 system. To investigate whether the high degree of supercooling is 
pertinent to the YAH melt solidification or to some other phenomena, the solidified 
material which remained in the crucihle after ODTA of YAG was subjected to a 
second analysis, results of which are shown in Figure 5.  Two endothermic maxima, 
the first at 1702 C and the second at 1855 C, substantiate the X-ray evidence 
which revealed that YAH, after being melted, solidifies into a mixture of AI2O3 
and YAIO3 in the absence of YAG nuclei.  The minimum at 1702 ± 7 C corresponds 
to the temperature of,the metastable eutectic formed between AI2O3 and YAIC^, 
while the metastable liquidus temperature for the particular mixture is 1855 C. 
In an effort to define the metastable phase diagram between AI2O3 and YAIO3, 
mixtures of AI2O3 and Y2O3 were reacted at 1100 C for 48 hours and analyzed by 
ODTA.  The melting of samples reacted in the solid state followed the equilibrium 
phase diagram shown by solid lines in Figure 6.  By remelting solidified samples, 
the metastable diagram shown by dotted lines was defined.  It should be noted 
that YAIO3 was found to melt incongruently with a peritectic temperature at 
1916 ± 7 C and a liquidus temperature at 1934 ± 7 C.  Supporting data are given 
in Table 4. 

1700 

1800 - 

1900 - 

£-2000- 

-AH +AH 

Figure 5.   ODTA curve of melting and freezing of YAG melt heated 

up to 2000 C and subsequently cooled to 1600 C. 
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Figure 6.   Phase diagram of the alumina-rich portion of the AI2O3-Y2O3 system.   Equilibrium phase 
diagram is shown in solid lines; pertinent phase fields are labeled without parentheses.   The metastable 
phase diagram is superimposed with dashed lines and its pertinent phase fields are labeled with 
parentheses.   Melts heated to temperatures indicated by the dashed line (a) obey crystallization path 
in accordance with the equilibrium phase diagram.   Melts cooled down from temperatures above the 
line (a) will follow metastable path of solidification. 

METASTABILITY 

Formation of Two Liquids 

Observation of liquids of YAG composition during crystal growth revealed 
that they are always opaque, in contrast to AI2O3 and YAIO3 melts, which are 
transparent.  Formation of two immiscible liquids appeared to be a possible ex- 
planation of the opacity.  Since the metastable eutectic has been determined 
between AI2O3 and YAIO3, it was inferred that, after melting, YAG forms two 
immiscible liquids, AI2O3 and YAIO3.  To prove this hypothesis the following 
experiment was conducted. 



Table 4.   TIMPERATURES OF SOLIDUS AND LIQUIDUS MEASURED BY ODTA 

Cc mpc sition 

Mol. % 
AI2O3 

Mixture Sintered 
4« Hr at 1100 C 

Solidus   Liquidus 
Deg C     Deg C 

Mixture Melted 
and Heated to 

2000C 
Perovskite 
to Garnet 

Mol. % 

Y2O3 

Solidus 
Deg C 

Liquidus 
Deg C 

Transformation 
Deg C 

10.0 90.0 1823 1942 1700 1936 1418 

18.5 81.5 - 1826 1700 1819 1419 

23. 0 67.0 1822 1960 - 1701 1416 

27. 5 72.5 1820 1890 1698 1761 1418 

32. 5 67.5 1822 1914 1707 1820 1418 

37.5 62.5 - 1940 1702 1855 N.M. 

40.0 60.0 1909 1933 1700 1880 1419 

43.0 57.0 1909 1930 1700 1825 N.M. 

45.0 55.0 - 1909 1700 1890 1418 

47.5 52.5 1909 1916 1700 1907 N.M. 

50.0 50.0 1916 1934 1914 1935 - 

N.M. = Not Measured 

In the absence of motion, immiscible liquids with different densities will 
tend to stratify.  In practice, however, convection currents exist which agitate 
the liquid.  To avoid thermal agitation of the melt, the HEM technique, which 
minimizes convection currents because of stabilizing temperature gradients, was 
selected to achieve the stratification of the immiscible liquids.  For this pur- 
pose, crushed YAG single crystals were melted in a cylindrical crucible in a 
crystal growth furnace and held for 4 hours at 1990 C.  After holding the melt 
unstirred and in thermal stable conditions for this length of time it was 
assumed, due to the density difference that the YAIO3 melt would be situated 
in the lower part of the crucible where the supercooling is highest and where 
nucleation should occur first.  To encourage localized nucleation, a heat sink 
of small diameter was located at the center of the crucible bottom.  After 
routine solidification used for growing single crystals by the HEM technique, 
the solid material was examined by X-ray Laue method and optical microscopy. 
The examination revealed that the entire bottom of the crucible was covered with 
a single crystal of YAlf^ (see Figure 7).  Since the YAIO3 crystal grew from the 
melt of YAG composition, the constitutional supercooling instituted dendritic 
growth.  The YAIO3 dendrites shown in Figure 8 grew in the [001] direction.  The 
nonreacted AI2O3 was found as a eutectic dispersion adhering to the lower parts 
of the dendrites.  In spite of positive results, this experiment does constitute 
only indirect evidence to confirm the existence of two immiscible liquids.  Micro- 
scopic examination of microstructures of metastably solidified mixtures of AI2O3 
and Y2O3 ranging from 25 to 50 mol. %  Y2O3 revealed that YAIO3 is always the pro- 
eutectic phase; hence, YAIO3 will nucleate first whether the liquids are separated 

10.   CASLVASKY, J. L., and VIECHNICKI, D. J.  Melt Growth ofNd:Y2AljOj2 (Nd:YAG) Using the Heat Exchanger Method (HEM). 
J. Crystal Growth, v. 46, 1979, p. 601-606. 

10 



Figure 7.   Perovskite twin on the bottom of YAIO3 single    Figure 8.   Dendrites finalizing the growth of the perovskite 
crystal grown from the melt of Y3AI5O12 composition.     crystal shown in Figure 7.   Note the perovskite twin on tips 

of dendrites in circled area. 

or not.  Furthermore, study of liquids of YAG composition by ODTA up to 2050 C 
did not reveal and AH change in the melt; therefore the opacity of the YAG melt 
is the only evidence for existence of two immiscible liquids in the AI2O3 - Y2O3 
binary system. 

Change of Aluminum Coordination 

The fact that YAIO3 melts incongruently limits its existence to temperatures 
below the peritectic temperature.  From this point of view it is unlikely to expect 
the formation of two liquids, one of which has the composition of an incongruently 
melting compound, i.e., YAIO3.  Therefore, a more reasonable explanation of the 
preferential formation of nonequilibrium YAIO3 over the YAG structure seems to 
lie in the fact that the aluminum has to decrease its coordination in order to 
form the garnet structure. 

Aluminum-oxygen octahedra are the most important structural elements in 
solid and molten structures of aluminum oxide.  It is not unreasonable to expect 
that the solid structure most similar to the short range order of the liquid will 

11 



be energetically favored and likely will form whether or not it is stable under 
the existing equilibrium conditions.  As seen from Figure 6, YAIO3 (in the compo- 
sition range 10.0 mol. % to 47.5 mol. % Y2O3) transforms to YAG in solid state at 
1418 C.  This transformation is accompanied by the volume change evidenced by the 
crucible expansion (see Figure 9), and has endothermic character which is observed 
by ODTA (see Figure 10) both those effects confirms that the YAG structure has a 
higher energy of formation than the perovskite structure.  The higher free energy 
of the YAG structure Results from the necessity to force aluminum into a fourfold 
coordination site to form YAG. 

Figure 9.   Photographs of the molybdenum crucible (25-mm in diameter), 
(a) Displays relation between height of the solid with respect to deformation of 
crucible,   (b) Wall expanded due to transformation of metastably frozen mixture 
of 67.5 mol. % AI2O3 and 32.5 mol. % Y2O3. 

12 
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Figure 10.   ODTA curve of melting and freezing of 90 mol. % AI2O3 and 

10 mol. % Y2O3 reacted by melting. 

CONCLUSIONS 

YAG melts congruently and is stable to its melting point at 1940 ± 7 C. 
YAIO3 (perovskite) melts incongruently with a peritectic at 1916 ± 7 C and a 
liquidus at 1934 ± 7 C.  A metastable phase diagram was defined with a metastable 
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eutectic at 23 mol. % Y2O3 - 77 mol. % AI2O3 and 1702 ± 7 C. YAIO3 formed during 
metastable solidification transforms to YAG in the presence of AI2O3 at 1418 ± 7 C. 

When melt temperatures do not exceed 1940 C, the melts of Y2O3 and AI2O3, 
ranging in composition from 10 to 45 mol. % of Y2O3, retain aluminum in fourfold 
coordination; therefore, they obey the crystallization path of the equilibrium 
phase diagram. However, at approximately 2000 C a structural change takes place 
in the liquid; consequently the melts cooled down from temperatures above 2000 C 
follow the crystallization path of the metastable phase diagram. The metastability 
is due to the fact that aluminum prefers the six-coordination in the melt, which 
also explains the difficulty of growing YAG single crystals from melt, since the 
growth rate is predominantly controlled by the rate of a decrease in the aluminum 
coordination. 

Furthermore, recent studies of Al203-Nd203-Y203 ternary phase relations by 
ODTA indicate that neodymia" destabilizes the fourfold coordination of aluminum, 
which increases the difficulty in growing Nd:YAG single crystals of laser quality. 
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